Field of Science

Showing posts with label Geo-Files. Show all posts
Showing posts with label Geo-Files. Show all posts

The true Geology behind The X-Files: Darkness Falls

Many of the threats encountered on the X-Files are not of this world, but even aliens seem normal when compared to some of our world´s insect species. 

In the episode "Darkness Falls" (season 1, episode 20) special agents Fox Mulder and Dana Scully are called in to investigate the mysterious disappearance of a team of loggers somewhere in the Cascade Range. Initially suspecting bigfoot (Mulder´s suspect) and eco-terrorists (Scully´s favourite), soon the agents find themselves isolated and trapped by a seemingly ancient menace lurking in the dark of the woods. Filming was done in the Seymour Demonstration Forest, north of Vancouver, a difficult to reach location even for the real film-crew.  

Soon it is discovered that an unknown species of insects was freed when the loggers illegally cut down old-grown trees. Mulder speculates that the insects, forming a sort of green-glowing swarm in the night, are a mutation caused by radioactive gases released from the underground, but extinct in the wild. However a swarm of the creatures, in close-up stock-footage of mites was used (mites are not insects, but related to spiders and can´t fly), survived hiding in the pores of a tree-ring, but now the swarm is free, very, very hungry and ready to build a nest. X-Files producer Chris Carter was inspired to write this episode based on his interest in dendrochronology – the study of tree-rings. 

Fig.1. The truth is in the tree-rings of this Douglas-fir - dendrology is used to reconstruct climate change in the past and was used in 1937 by R.H. Finch for the first time to date the activity of the Cinder Cones volcanic field in California.

But what about strange behavior of the supposed insects, are there similar real cases to be found? 

Ants are a common insect group, forming swarms with a complicated social structure and are successfully used as bioindicators - maybe even for gases coming from the underground.

 
 Fig.2. Alien ants...

Faults can be pathways for liquids and gases and some research tries to map faults by measuring the concentration of gases like radon. The permeability of a fault is also influenced by its activity, anomalous gas concentration could be signs of increased tectonic activity. During investigations in 2002 of the structural geology of the Rhenish Massif in Germany, it was noted that anthills of the species Formica rufa, F. polyctena and F. sanguinea display a peculiar linear trend. The locations coincided with active, gas-permeable fault zones. That ants could choose a site for their nest based on the bedrock is not impossible and was noted already 70 years ago, as the bedrock can influence if the soil is wet or dry and ants prefer dry conditions. However no correlation with faults or nests was known. In the 2002 research more than 1000 anthills were mapped, almost 700 of them running parallel to vertical fault lines. It´s not clear what effects the ants, as faults can imply a sudden change of bedrock, topography and gases. The case remains unsolved at the moment...

Fig.3. Ant may take some advantages by building their nests on gas-permeable faults, as the warm gases from the underground can act as sort of natural heating, figure from BERBERICH et al. 2013.

Interested in reading more? Try: 

BERBERICH, G. et al. (2013): Early Results of Three-Year Monitoring of Red Wood Ants’Behavioral Changes and Their Possible Correlation with Earthquake Events. Animals, 3: 63-84
BRENNHOLT, N. (2008): Geologische Störungszonen als Kriterium der Standortwahl Hügel bauender Waldameisen unter Berücksichtigung spezieller mikrobieller Gemeinschaften. Dissertation Universität Duisburg-Essen: 239
SCHREIBER, U.; BRENNHOLT, N. & SIMON, J. (2009): Gas permeable deep reaching fracure zones encourage site selection of ants. Ecological Indicators, 9: 508-517

The true Geology behind The X-Files: The Jersey Devil

Mulder: "But, but what if through some fluke of nature, a human was born, who reverted to it's most animal instincts, a kind of carnivorous neanderthal. Wouldn't he occupy a space above us on the food chain?"

In the X-Files episode "The Jersey Devil" (season 1, episode 5) special agents Fox Mulder and Dana Scully investigate a supposed serial killer with cannibalistic tendencies hiding in the woods of New Jersey. Strange drawings let Mulder speculate about a surviving population of prehistoric man-beasts..
The idea of the missing link, an intermediary creature between apes and man, was introduced by Victorian geologist Charles Lyell in 1837 but still it´s very popular in our imagination.

On a cold morning in 1969 local residents of Colville  (Washington, U.S.A.) found more than 1.000 tracks of an unknown creature in the snow. Strangely the tracks resembled a gigantic human foot, one track showed even a malformation, caused supposedly by a severe injury. Casts were made of the more unusual tracks and send to anthropologist Grover Sanders Krantz (1931-2002), who soon was convinced that no trickster could fake such tracks – the creature was surely bigfoot, a supposed giant ape living in the forests of North America.
 
Fig.1. Reconstruction of Neanderthal man as ape-man for a newspaper, art by Frantisek Kupka (1909).

First tales of strange creatures living in the woods were collected by schoolteacher and amateur mythologist John W. Burns in the 1920s, who however described a myth of a giant race of Indians, not apes.  
However the modern story of bigfoot started not in America but in Asia. In 1951 with the discovery by Alpinist  (with a strange sense of humour) Eric Shipton of large tracks in the Himalayas. Eminent zoologist Wladimir Tschernezky was sure that the tracks were made by a large, bipedal and unknown hominid, maybe a descendent of the extinct gigantic ape Gigantopithecus, living during the Pleistocene in Asia. Journalist John W. Green (1927-2016) published in 1968 “On the Track of Sasquatch”, a book where he, even if not claiming that bigfoot is in fact Gigantopithecus, made the argument that if in the past large apes existed it´s not impossible that such animals still exist.
 
Fig.2. The famous Patterson-Gimli film, showing a supposed encounter with a female bigfoot in California, from 1967 shows bigfoot suspiciously ape-man and Mulder´s supposed culprit in the X-file:

The direct connection between Giganto and anomalous primates was made first by zoologist Bernard Heuvelmans in 1952, based on reconstructions of Gigantophitecus by German palaeontologist Franz Weidenreich (1873-1948) and Ralph Von Koenigswald (1902-1982) as primitive man. Heuvelman writes “this theory, which is utterly hypothetical, provides the only entirely acceptable explanation of the mystery of the Abominable Snowman.” Krantz after reading Green´s book popularized this idea in TV. Krantz argued that migrating groups of Giganto evolved into local populations of anomalous primates, in Asia into the Yeti and in America into the Bigfoot. In 1955 a certain William Roe claimed to have encountered bigfoot, describing it appropriately now as a “giant ape” (Roe´s story was however never verified) - the idea of humans living hidden in the woods was replaced by apes and suddenly people started to talk about strange encounters with hairy ape-man beasts. 
Bigfoot got its name finally in 1958, with an article about alleged bigfoot tracks found at Bluff Creek (California), revealed later to be in fact only fakes.

 

However the entire Gigntopithecus-hypothesis is based on an outdated reconstructions of the species, as is the idea of a linear evolution of humans.
Franz Weidenreich reconstructed Gigantopithecus, known only from a fragmentary fossil record, as a sort missing link between apes and man - with the appearance of a hairy ape but bipedal locomotion as humans do. However modern reconstructions see it as related more closely to the orangutan than any other large apes or humans. Bigfoot is however rarely (make it never) described as large orangutan.

Mulder muses that his idea of surviving large hominids is highly unlikely, but not outside the realm of extreme possibilities. However as primatologist John Napier (1817-1987) explains, the existence of past species in an entire different ecosystem doesn´t give veracity to modern sightings and misidentifications with no unequivocal physical evidence to back them:

 
By postulating that a monster is a relic form -  a hangover from the past – monster fans feel absolved from the necessity of explaining how such an outrageous unsuitable creature has evolved in the light of present-day ecology.”


*As for the tracks of Colville. Amateur bigfoot hunter Renè Dahinden (1930-2001) considered the tracks more than suspicious, as no creature was spotted despite thousands of tracks and the first discovery was made by Ivan Marx, a known hoaxer of bigfoot encounters.

Interested in reading more? Try: 

DELISLE, R.G. (2012): Welcome to the Twilight Zone: a forgotten early phase of human evolutionary studies. Endaevour Vol.36 (2): 55- 64
KJAERGAARD, P.C. (2011): 'Hurrah for the missing link!': a history of apes, ancestors and a crucial piece of evidence. Notes Rec. R. Soc. 65: 83-98
LOZIER, J.D.; ANIELLO, P. & HICKERSON, M.J. (2009): Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling. Journal of Biogeography: 1- 5
MELDRUM, J. (2007): Sasquatch: Legend Meets Science. Forge-Publishing: 297
REGAL, B. (2008): Amateur versus professional: the search for Bigfoot. Endaevour Vol.32 (2): 1- 5
REGAL, B. (2009): Entering dubious realms: Grover Krantz, science, and Sasquatch. Ann. Sci. Vol.66(1): 83-102
REGAL, B. (2011): Searching for Sasquatch – Crackpots, Eggheads, and Cryptozoology. Palgrave Macmillian Publisher: 249

The true Geology behind The X-Files: Firewalker

Mulder:" ... I found several references to a subterranean organism."
Scully: "What are you talking about?"
Mulder: "An unknown organism, existing within the volcano. I haven't found anything yet that describes it in specific terms but ..."
Scully: "Mulder, nothing can live in a volcanic interior, not only because of the intense heat but the gases would be toxic to any organism."


In the X-Files episode "Firewalker" (season 2, episode 9) special agents Fox Mulder and Dana Scully investigate the death and the disappearance of another member of a team of scientists, busy monitoring Mount Avalon in Oregon, an active volcano ready to erupt. Mount Avalon is a fictional place, supposedly part of the Cascade Range, but in the episode real footage of the eruption of Mount St. Helens (Washington) was used. In the episode the geologists also mention Sherman Crater, found at Mt. Baker.

Soon it is discovered that a parasitic lifeform uses humans as a host, nesting into the victim´s lungs. Terrestrial in origin and the result of a parallel evolutionary process, this lifeform bases its metabolism on silicon. As it produces as waste simple silicon-dioxide or sand, the lungs will eventually fill with sand and the host suffocate.
The parasite is first discovered when spores are released from rock samples collected by a robot - named "Firewalker" - from inside the crater of Mount Avalon. The idea of Firewalker is based on a real robotic probe, a joint project between NASA and Carnegie Mellon's Field Robotics Center. In 1992 "Dante", as the real eight-legged robot was named, was scheduled to explore an Antarctic volcano.
Later the parasite is revealed to be a sort of sponge/mushroom-like organism, growing inside and finally bursting out of its host to release its spores.

 
Fig.1. The full-grown silicon-based organism as seen in the X-Files.

In first production sketches the parasite resembled more a worm than a fungus, like previously seen in the episode Ice” (season 1, episode 8). The writing of the episode is indeed very similar to this episode, as an isolated team of scientists is threatened by an unseen killer, paranoia spreads fast (anyway both episodes are very similar to the “The Thing” from 1982 and “Alien” from 1979). In the final version the fungus appear to be inspired by specimens of Cordyceps, a genus of endoparasitic fungi of small animals. 

In life as we know it only ten elements play a mayor role: carbon, oxygen, nitrogen, hydrogen, potassium, calcium, magnesium, iron, phosphorus and sulphur. Strangely carbon is among the rarest elements on earth, so why is it so important in the biosphere? 

Carbon can form stable and complex macromolecules within the temperature range found on earth. Atomic bounds between the carbon-carbon, carbon-oxygen and carbon-hydrogen atoms are very stable and the formed molecules are soluble and stable in water, important property for terrestrial biochemistry. Silicon is very common in earth´s rocks but rarely used by earth´s life, even if it´s popular in aliens (according to science-fiction tropes). Microorganisms like radiolarians and diatoms use silaffins, a unique type of peptides, and silica-hydrogels Under higher organisms only siliceous sponges are known to use silicon. However all those organisms use silicon only to build their shells or skeletal structures, not directly in their metabolism.

Fig.2. Drawing by biologist Ernst Haeckel of the silicon-skeleton as seen in the group radiolaria. Charles Darwin even remarks in "Origin of Species (1866) that "Few objects are more beautiful than the minute siliceous cases of the diatomaceæ: were these created that they might be examined and admired under the higher powers of the microscope?"

Under terrestrial environmental conditions silicon-based life is highly improbable and anyway not competitive with carbon-based life. However as silicon is found in the periodic table near carbon it displays some similar properties, suitable for life in general.
Silicon forms stable
(however not as stable as carbon) bounds with itself and other elements like carbon, germanium, nitrogen, phosphorus, oxygen, sulphur and many metals. Those silanes can form complex and flexible macromolecules, forming sheets, chains and tubes needed to form parts of a living cell.

However silicon shows a very strong affinity to oxygen, as shown by the very common minerals-group of the silicates, composed mostly of silicon and oxygen. Earth´s atmosphere is composed of 21 percent of oxygen and silicon lifeforms would probably have troubles as the oxygen would slowly corrode their bodies. Also water would do more harm than good to the relatively delicate silicate molecules.

A silicon-lifeform would need therefore a reducing atmosphere, scarcity of water, low temperatures to stabilize the silicon-silicon bounds and an alternative solvent for the silicon-molecules, like liquid methane (highly unlikely idea but not outside the realm of extreme possibilities, as lakes of methane are found on the moon Titan).

In “Firewalker” the science is in part plausible. The silicon lifeform is found in (presumably) anoxic conditions and it is stated in the episode that oxygen will kill the organism by destroying its molecules. However temperatures are very high inside an active volcano (
strangely also in one scene they try to kill the parasite with fire... it survives a volcano but can´t stand a fire?! :/), so that may be implausible for a silicon-based organism. To be fair geneticist J. B. S. Haldane (1892-1964) proposed that silicon-lifeforms could survive inside a planet feeding on partially molten rocks.
Another contradiction seems to be the parasitic nature of this hypothetical organism. It´s not clear from the episode if the organism is an obligatory parasite or the spores simply and by accident grow inside the infected researchers. Scully discovers that the spores don´t react with any carbon-based tissue and have no preferred range of temperatures for growth. However, as Scully speculates, the spores die so quickly in the superficial environment that maybe she wasn't able to collect some living specimens. The interior of a carbon-based organism also mostly composed of water (on average, the body of an adult human being contains 60% water), would probably be anyway hostile to a silicon-based parasite.

The episode ends with a devastating eruption of Mount Avalon, pyroclastic flows destroy the research station and any evidence of the unknown organism. Only Mulder and Scully escape and the government covers up any information about this X-file:

Mulder: "[]...The data it collected from the earth's interior will never be known. And of the events that occurred at Mount Avalon between the 11th and 13th of November, 1994, mine stands as the only record."

Interested in reading more? Try:

SCHULZ-MAKUCH, D. & IRWIN, L.N. (2006): The prospect of alien life in exotic forms on other worlds. Naturwissenschaften. Vol.93: 155-172
SIMON, A. (1999): Monsters, Mutants & Missing Links: The Real Science Behind the X-Files. Ebury Digital Publisher: 256

This 1783 Volcanic Eruption Changed The Course Of History

The sun fades away, the land sinks into the sea,the bright stars  disappear from the sky,
as smoke and  fire  destroy  the world,
and the flames reach the sky.
The End of the World according to the “Völuspa“, a collection of Icelandic myths compiled in the 13th century.

June 8, 1783 marks the beginning of a volcanic eruption that will change history…

The Geology of the Mountains of Madness

“[]…we expected to unearth a quite unprecedented amount of material – especially in the pre-Cambrian strata of which so narrow a range of antarctic specimens had previously been secured. We wished also to obtain as great as possible a variety of the upper fossiliferous rocks, since the primal life history of this bleak realm of ice and death is of the highest importance to our knowledge of the earth’s past.

100 years ago only segments of the coast and the approximately contours of Antarctica were known – a perfect scenario to be filled by the imagination of a writer. In 1888 the novel “A Strange Manuscript Found in a Copper Cylinder“, by Canadian James De Mille, was posthumously published (Brian Switek recovers these lost tales on his Dinosaur Tracking post “Who Wrote the First Dinosaur Novel?“). The novel narrates the adventures of a sailor shipwrecked on an unknown part of the continent, where volcanic activity enables a tropical lost world to flourish. Only in 1912, maybe also in response to the successful expeditions to the South Pole, Arthur Conan Doyle reinvented “The Lost World” in a remote region of the Amazonian forest. Curiously Edgar Rice Burroughs published in 1918 the first part of “The Land That Time Forgot“, maybe hoping to exploit the celebrity of Doyle’s tale. Here the primordial world populated by tropical forests and of course dinosaurs is located again near Antarctica on the island of Caprona, first reported by the (fictitious) Italian explorer Caproni in 1721.

At the Mountains of Madness” is a science-fiction/horror story by the American writer H. P. Lovecraft (1890-1937), written in February/March 1931 and originally published in the February, March and April 1936 issues of one of the first pulp-magazine of history: “Astounding Stories“.
Like many others stories by Lovecraft also Mountains of Madness is retold from a first-person perspective: Geologist William Dyer is one of the few survivors of an Antarctica expedition that in 1930 studied the geology of the frozen continent. After discovering strange trace fossils a team ventures into the unknown interior of Antarctica, only to discover a terrifying chain of dark peaks:

He was strangely convinced that the marking was the print of some bulky, unknown, and radically unclassifiable organism of considerably advanced evolution, notwithstanding that the rock which bore it was of so vastly ancient a date – Cambrian if not actually pre-Cambrian – as to preclude the probable existence not only of all highly evolved life, but of any life at all above the unicellular or at most the trilobite stage. These fragments, with their odd marking, must have been five hundred million to a thousand million years old.

Lovecraft is today considered one of the first authors to mix elements of the classic gothic horror stories, mostly characterized by supernatural beings, with elements of modern science-fiction, were the threat to the protagonists results from natural enemies, life, but not as we know it. He was an enthusiastic autodidact in science and incorporates in his story many geologic observations made at the time, he even cites repeatedly the geological results of the 1928-30 expedition by explorer Richard Evelyn Byrd. Only in 1929-31 the British-Australian-New Zealand Antarctic Research Expedition was mapping the last unknown coastlines and still not much was known about the geology and palaeontology of the interior of the continent.

The first fossils, fragments of petrified wood, described from Antarctica were collected in 1892-93 on Seymour Island by members of the Norwegian Antarctic Expedition led by Carl Anton Larsen (most fossils were traded later by the sailors for tobacco, Larsen handled his specimens to the University of Oslo). One of the first geologists to collect fossils in Antarctica was the Swedish geologist Otto Nordenskjöld in 1902-03, he and his crew discovered Jurassic plant fossils, shells and the bones of gigantic penguins (which also have an cameo in Lovecraft’s tale). Based on the plant fossils Nordenskjöld was also one of the first researchers to propose that Antarctica in the past experienced a much warmer climate and was covered by forests of ferns and other tropical plants. Lovecraft will evocate this long lost past in his story by the unexpected discovery of a cave that acted as sediment trap for millions of years:

The hollowed layer was not more than seven or eight feet deep but extended off indefinitely in all directions and had a fresh, slightly moving air which suggested its membership in an extensive subterranean system. Its roof and floor were abundantly equipped with large stalactites and stalagmites, some of which met in columnar form: but important above all else was the vast deposit of shells and bones, which in places nearly choked the passage. Washed down from unknown jungles of Mesozoic tree ferns and fungi, and forests of Tertiary cycads, fan palms, and primitive angiosperms, this osseous medley contained representatives of more Cretaceous, Eocene, and other animal species than the greatest paleontologist could have counted or classified in a year. Mollusks, crustacean armor, fishes, amphibians, reptiles, birds, and early mammals – great and small, known and unknown. No wonder Gedney ran back to the camp shouting, and no wonder everyone else dropped work and rushed headlong through the biting cold to where the tall derrick marked a new-found gateway to secrets of inner earth and vanished aeons.

In 1920 the geologist William Thomas Gordon described the oldest Antarctic fossils, archaeocyathids found in rocks dated to the Cambrian Period (more than 500 million years ago). Archaeocyathids, sponge-like organisms, were also discovered in samples coming from a moraine of Beardmore Glacier and collected in 1907-09 by Ernest Shackleton during his failed attempt to reach the South Pole.
 
The desire to understand the ancient history of Antarctica had also a tragic consequence. December 14, 1911 Roald Amundsen and his team had reached the South Pole, four weeks later Robert Falcon Scott and his team sighted the tent with the Norwegian flag. This unexpected discovery demoralized Scott and his men who had also to face the impending polar winter and an insufficient stock of supplies. However Scott decided during his return to stop at a moraine and collected rock samples, loosing precious time and adding ulterior weight on the sleigh pulled by the men.

The moraine was obviously so interesting that when we had advanced some miles and got out of the wind, I decided to camp and spend the rest of the day geologizing. It has been extremely interesting . . . Altogether we had a most interesting afternoon, but the sun has just reached us, a little obscured by night haze.

The samples were discovered in 1912 along with the frozen bodies of the men. In 1914 British palaeontologist Albert Charles Seward described the fossil plant remains collected by Scott’s party as Glossopteris and Vertebraria, two species of plants distributed almost worldwide that will later be used by Alfred Wegener as evidence that Antarctica was once connected to the other continents.

Lovecraft apparently was fascinated by the theory of continental drift as proposed by Wegener in the 1920s, as he describes the discovery of an ancient topographic map of unknown origin in a dead city, showing the slow movement of the continents on the surface of earth.

As I have said, the hypothesis of Taylor, Wegener, and Joly that all continents are fragments of an original Antarctic land mass which cracked from centrifugal force and drifted apart over a technically viscous lower surface- an hypothesis suggested by such things as the complementary outlines of Africa and South America, and the way the great mountain chains are rolled and shoved up-receives striking support from this uncanny source.

For Lovecraft the geology and the detailed description of the discovered fossils is an essential part to present the idea of deep time, especially the pre-Cambrian, when according to the knowledge of his time no life existed on earth. However the expedition of Dyer discovers in rocks dated to this ancient period the traces of highly evolved creatures, referred only as the Elder Ones. They are far superior in their culture, technology and abilities to our civilization, most important they are immeasurable older than humans and Lovecraft’s tale ends with a warning: compared to the almost unimaginably vastness of the age of earth (and these creatures) we should feel quite humble (and afraid).

I am forced into speech because men of science have refused to follow my advice without knowing why. It is altogether against my will that I tell my reasons for opposing this contemplated invasion of the antarctic – with its vast fossil hunt and its wholesale boring and melting of the ancient ice caps. And I am the more reluctant because my warning may be in vain.

 
Fig.2. Digital Elevation Model of the bedrock of the Antarctic continent, after data from LYTHE, M.B., VAUGHAN, D.G. and the BEDMAP Consortium (2000): A new ice thickness and subglacial topographic model of the Antarctic.

Today much more is known about the geology of Antarctica.  The landmass of Antarctica is composed by two large blocks separated by the Transantarctic Mountains, a 2.800km long mountain range with 4.000m high peaks (Lovecraft´s imaginary Mountains of Madness were more than twice as high as these mountains).
East Antarctica is dominated by Precambrian igneous and metamorphic rocks, however almost completely covered by a 4.000m thick ice cap. Even if East Antarctica is thought to be an ancient and stable continental shield, geophysical investigations showed prominent mountains buried under the ice, like the Gamburtsev Mountain Range, a 1000km long mountain range with peaks almost 3.000m high. The origin of these mountains was for a long time an intriguing mystery – volcanic origin, mountains formed by subduction very recently or the remains of an ancient Gondwanan-orogeny were the most popular hypotheses. Most recent research (FERRACCIOLI et al. 2011) proposes that these mountains are much elder ones, formed by movements during the collision of the various blocks.
West Antarctica is a mosaic of five smaller blocks covered by the West Antarctic Ice Sheet; however rocks are exposed on the Antarctic Peninsula. The Antarctic Peninsula was formed by uplift and metamorphism of sea-bed sediments during the late Paleozoic and the early Mesozoic, as proved by the fossils that inspired Lovecraft.

Bibliography:


HUNTFORD, R. (2010): Race for the South Pole – The Expedition Diaries of Scott and Amundsen. Continuum International Publishing Group: 330
LONG, J. (2003): Mountains of Madness – A Scientist’s Odyssey in Antarctica. Jospeh Henry Press, Washington: 252

It’s life, Charlie, but not as we know it – Charles Darwin and the search for Extraterrestrial Life

Actor Leonard Nimoy passed away today aged 83. So to remember his famous role as science-officer Spock on board of the USS Enterprise I will share some space-geology-related posts:

In August 1881 the short-lived popular “Science” magazine published an article with a letter exchange by two amateur geologists – British Charles R. Darwin and the German Otto Hahn- discussing the possibility of extraterrestrial life. Just some years earlier Darwin had published a book “On Origin of Species” proposing that complex life forms descended slowly over time from simple ones, however as earth seemed to be too young (based on the erroneous calculations of a certain physicist known today as Lord Kelvin) to explain the observed modern complexity, the origin of microorganisms in space (which existence would predate the formation of earth) could solve this apparent contradiction.

Life from outer space was not a new idea. Already in 1865 the German physician Hermann Eberhard Richter argued that life was an intrinsic property of the cosmos, transported in space on smaller rocky fragments, dormant microorganism could act like seed, evolving in short time into complex organisms after the host-rock impacted on a suitable planet.

Otto Hahn (1828-1904) was a former lawyer turned to amateur naturalist and geologist, with a special interest in the origin of life. Hahn was known by the scientific community due his research on Eozoön or Eozoon (the “dawn animal”) – an enigmatic Archaean fossil described in 1864 from Canadian limestone-formations – believed to be some sort of gigantic microorganism it predated all other known fossil organisms. However it seemed strange that already the oldest life form would be a highly evolved animal and Hahn himself doubted at first that it was even a fossil. In 1880, after carful investigation of some collected rock samples, Hahn changed his mind and reclassified Eozoön as an ancient algae, renaming the fossil Eophyllum (“dawn plant”).

Fig.1. Eozoon specimen, the regular lamination were interpretated as chambers of a shelled organism or growth lines, image from DAWSON (1888): The Chain of Life in Geological Time. However in 1894 similar rocks were found in material erupted by Mount Vesuvius, proving that this texture formed by inorganic processes due the alteration of limestone by heat from underground magma.

After this achievement, Hahn suddenly started to find fossils of primitive organisms in all sorts of rocks, not only in sedimentary rocks, but also ancient, partially melted, metamorphic rocks and even igneous rocks like granite or basalt, completely crystallized from the molten magma. He published his observations in a 1879 book entitled “Die Urzelle” – the primordial cell - arguing that in fact all observable rocks were of some sort of sedimentary origin, composed by the shells of these tiny primordial, yet unidentified, microorganisms – and send one copy also to Charles Darwin, inviting him to promote this revolutionary discovery.

Hahn soon added even some extraterrestrial material to his collection of microorganism-derived rocks. Not surprisingly, also in samples of meteorites he discovered his primordial cells, also what seemed to be sponges and even corals. He published his discovery in the 1880 book “Die Meteorite (Chondrite) und ihre Organismen” (The chondrite meteorites and their organisms), also one of the first books including images of sections of extraterrestrial rocks. Hahn argued that the studied meteorites were remains of a cosmic cloud of gas, vapor and dust from which our solar system formed. In this semi-liquid environment life formed, evolving at least to the stadium of invertebrates. After the formation of the planets, agglomerated chunks of matter transported these primitive organism onto earth, where they continued to evolve until the appearance of man.

Fig.2. Frontispiece of Hahn’s “Die Meteorite (Chondrite) und ihre Organismen” showing a supposed plant- or sponge-like fossil in a meteorite, today reinterpretated as shattered mineral grain (Chondrule).

Also this book was send to Darwin, who – as was his cautious manner – politely thanked for the gift, replying that the proposed scientific hypothesis was sure worth of further investigation (but nothing more):

If you succeed in convincing several judges as trustworthy as Professor Quenstedt*, you will certainly have made one of the most remarkable discoveries ever recorded.” *[Friedrich August Quenstedt (1809-1889), famous German professor of mineralogy and geology]

However Hahn in a private letter to a friend claimed “Darwin pronounced: it is one of the most important elucidations ever made.” Strangely also in the Science article of 1881 other very Darwin-unlike behavior appears. Supposedly Darwin, observing under the microscope the rock fragments, jumped from his seat exclaiming ”Almighty God! What a wonderful discovery! Wonderful!” and stating that indeed “life [came] down!” from space.

There survives no hard evidence that Hahn did visit Darwin at Down House in Kent to show him his samples, but it also can’t be completely ruled out. Maybe Hahn, before travelling to Canada for his research on Archaean fossils, did also visit England. His idea of all rocks derived from microorganisms, as strange as it may sounds today, was taken serious at the time, at least by some naturalists. However Darwin had studied volcanoes and their igneous products, so there is no doubt he did not share this part of Hahn’s visions. Also it seems improbable that Darwin believed it necessary to relocate the origin of life in outer space.

Darwin never addressed in public the mystery of mysteries that is the origin of life. His theory of natural selection deals with the diversification of already reproducing life forms and was never intended (as creationists claim) to explain the origin of life. In private letters he proposed a chemical evolution in a primordial soup, but he also acknowledged that his contemporary science was yet not able to test this hypothesis.

As for the supposed to young age of earth and to evolved terrestrial life forms, already Darwin published various rebuttals to Lord Kelvin’s claims in later editions of his “Origin of Species”. There was – so he argued – plenty of time for terrestrial life to evolve, even without extraterrestrial intervention.

Bibliography:

PERETO, J.; BADA, J., & LAZCANO, A. (2009): Charles Darwin and the Origin of Life. Origins of Life and Evolution of Biospheres, 39 (5), 395-406
BRASIER, M. (2009): Darwin’s Lost World – The hidden history of animal life.Oxford University Press: 304
WYHE, van J. (2010): ‘Almighty God! What a wonderful discovery!’: Did Charles Darwin really believe life came from space? Endeavour, 34(3): 95-103

Charles Lyell´s Quite Futile Hunt for the Sea-Serpent

In October 1845 British geologist Charles Lyell was visiting Boston, when he noted an advertisement proclaiming that a “Dr.” Albert C. Koch would exhibit the 114-foot-long skeleton of “that colossal and terrible reptile the sea serpent” to the paying public. Lyell exposed this claim soon as a fraud, as the skeleton was in fact composed from the bones of the extinct whale Zeuglodon, described by Richard Owen just some years earlier.

Fig.1. The infamous “Hydrarchos” by German fossil collector Albert Koch as displayed in New York. Not only was the animal composed of various specimens of the extinct whale Zeuglodon, but in this illustration even the size of the supposed skeleton is exaggerated.  Image from FOWLER (1846): “The American Phrenological Journal and Miscellany”.

Like many other Victorian naturalists Lyell showed great interest in the supposed existence of large marine monsters. A good friend of Lyell, Canadian geologist John William Dawson, informed him of  a sighting in August 1845 at Merigomish, in the Gulf of St. Lawrence. Here two “intelligent” testimonies had observed a 100-foot-long sea snake with humps on the back and the head similar to a seal. Lyell describes this sighting in his book “Second Visit to the United States of North America” (1849) and adds that stories about unusual encounters abound along the west coast of the U.S. He mentions even that a young sea serpent was still preserved in spirits in the Museum of New Haven. However Lyell, seeing the specimen for himself, agreed with other skeptics that it was nothing more than a land snake (Coluber constrictor) with a deformed spine.

Fig.2. Newspaper from Boston with an article about the strange, but true, encounter with the Mountauk Monster – sea serpent in 1817.

Despite the lack of evidence, Lyell confess in his writings that he remains optimistic “for I believed in the sea serpent without having seen it.

At Lyell’s time the birth and age of earth was still a controversial topic. Most geologists assumed a gradual formation of earth, characterized by constant progress until the human epoch. In contrast Lyell postulated two important principles for geologic time – processes observable today were active also in the remote past and time is (similar to the motion of the stars) organized in cycles. Large marine reptiles (like the Ichthyosaur or Plesiosaur), but also large marine mammals (like the Zeuglodon), were known to have existed in the past. Their continuous existence would provide biological – and therefore independent – evidence for his geo-theory.
Assuming sea serpents were never captured alive in historic times as they were very rare and almost extinct, the supposed rise in population during the 19th century (as, so Lyell, this could explain the rise in sightings since 1817) was a result of  earth’s history repeating itself. The large prehistoric reptiles of the past, almost gone during the last ice age, would again rise to conquer a warmer world.

Lyell was not the only geologist searching for the mythical sea snake, as many naturalists at the time considered (or explained) monsters as survivors of a former world. However Lyell was aware about the controversy surrounding the topic. In the end he never published such accounts to support his geo-theory and probably it would have done more harm than good to include sea serpents and other monsters in a textbook about geology.

Fig.3. The Ichthyosaurus, only to be found in the museum? The discovery of bones and description of prehistoric beasts boosted the sightings of supposed sea and lake monsters during the 19th century, caricature published in 1885 in the Punch magazine.

Bibliography:


CLIFFORD, D.; WADGE, E.; WARWICK, A. & WILLIS, M. (eds.) (2006): Repositioning Victorian Sciences – Shifting Centres in Nineteenth-Century Thinking. Anthem Press: 300
GLENDENING, J. (2009): ‘The World-Renowned Ichthyosaurus’: A Nineteenth-Century Problematic and Its Representations. Journal of Literature and Science. Vol.2 (1): 23-47
LYONS, L..S. (2010): Species, Serpents, Spirits, and Skulls: Science at the Margins in the Victorian Age. State University of New York Press: 260
SWITEK, B. (2010): Written in Stone – Evolution, the Fossil Record, and our Place in Nature. Bellevue Literary Press – New York: 320

The Destruction of Pompeii - Still a Mystery of History

It's probably the most famous volcanic eruption of all times - the 79 A.D. eruption of Mount Vesuvius that destroyed the cities of Pompeii and Herculaneum. So may it surprise that the exact date of this event is still unclear. The date of August 24 given in textbooks is based on two letters from the Roman author Pliny the Younger to Tacitus, a historian who had asked his friend for help to reconstruct the death of famous naturalist Pliny the Elder during the eruption. However the original letters didn't survive into modern times and what we know of Pliny's response is based only on medieval transcripts. Already there various versions exist with different dates (ranging from August to November) or even without any reference - this discrepancy can be explained by various transcription errors, almost inevitably considering that the eruption happened almost 17 centuries ago.

Also some archeological evidence suggests a later date for the eruption:

- The famous gypsum-casts show people wearing thicker clothing, unusual for August but appropriate for cooler temperatures of an early autumn. Also in many houses portable stovens - ready for use ? - were noted.

-  The lack of typical summer fruits, but the discovery of fresh autumn fruits, like olives and figs in the shops, suggests a period in late October.

- Large jars, used for fermenting wine, were discovered already sealed. Considering that the grapes mature in early autumn this observation would suggest a date for the eruption at the end of October.

- A coin - a Capricorn Silver Denarius issued by emperor Titus in July - June 79 A.D.- found along the corpse of a woman buried in the ash suggests that the eruption occurred late in summer/early autumn, as the coin would not be in circulation earlier. However the exact identification of the coin (there exist various editions and the inscriptions of the recovered coin is difficult to read) is in dispute.


Fig.1. A Capricorn Silver Denarius (named so after the emblem on one side of the coin, on the other side celebrating the coronation ceremony of Titus to emperor in 79) seemingly similar to the coin discovered in the ruins of Pompeii (image from "A Brief Overview of the Flavian Dynasty", by L. HARSH)

- The remains of garum - a spicy fish sauce - made using the fish species Boops boops (bogue), abounding in the Mediterranean Sea from July to August, could also point to a period of the eruption sometime between late August - September.

Also some geological evidence, like the distribution of ash deposits, suggests a later eruption. The mapped ash layers suggest that during the eruption the wind blow from the east. This wind pattern is unusual for the summer in Naples, but dominant in the rest of the year.


So in the end...

"There are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns – there are things we do not know we don't know.“ 
Donald Rumsfeld, 2002

Bibliography:

STEFANI, G. (2006): Scoperte Campania - La vera data dell´eruzione. ARCHEO 260 - Ottobre: 10-13

ROLANDI, G.; PAONE, A.; LASCIO, M.di & STEFANI, G. (2008): The 79 AD eruption of Somma: The relationship between the date of the eruption and the southeast tephra dispersion. Journal of Volcanological and Geothermal research. Vol. 169(1-2): 87-98

Unidentified Sedimentary Object

These large (hammer is 20cm long) vertical structures are found in lacustrine sediments (homogeneous fine-grained sand with dropstones, left of picture) of the Alpine last glacial maximum.
They show a sharp contact to the surrounding sediments, seem to be layered vertically - note however that the longest axis of the pebbles seem to be oriented horizontally - origin: unknown. 


The End of the Mayan World

According to the popcorn-movie "2012" (2009) the end of the world will come due increased solar activity that will overheat earth and cause catastrophic volcanic and tectonic storms on December 21, 2012. This premise is so dumb that even NASA declared "2012" as the most "absurd science-fiction movie" of all times, not only because the science is so bad, but the movie exploits also the fear mongering story of the supposed end of the Mayan calendar, first proposed by artist and author José Argüelles in 1987. Almost all of the supposed end of the world tale is nonsense, the various proposed mechanism to explain the destruction of the planet, like solar eruptions, pole shift or the impact of an invisible planet, are unrealistic, as it is unrealistic to claim that the end of a arbitrary time period has any significance for earth.

Fig.1. The goddess Chakchell, with her terrifying snake headdress, is flooding earth with the waters coming from the jar of the gods. She is helped in this task by the dark god of the underworld, with an owl as symbol of his power, and the divine crocodile - even the holy hieroglyphs are crying and the world will soon drown (after the "Codex Dresdensis", ca. 1200-1250, plate 47 "The flood").

However in the last years the Maya Civilization arouse the interest not only of crackpots, but also serious historians and even climate scientists. This ancient society possessed advanced knowledge of astronomy, mathematics and architecture, but 1.200 years ago (750-950 A.D.) the various city-states on the Yucatan peninsula suffered a sudden collapse. Various hypotheses tried to explain this demise: internal warfare, foreign invasions, diseases, overpopulation in combination with environmental degradation and climate change.
The Yucatan peninsula is characterized by a heterogenic spatial distribution of precipitation and seasonal droughts, especially during the beginning of the year (January- May). The climate is influenced by the position of the Intertropical Convergence Zone (ITCZ), wind systems that shift position due the seasons and bring moisture to the land. The Maya had to deal with these variations and in response build large artificial reservoirs. The limestone of the Yucatan peninsula is highly permeable and the groundwater is almost inaccessible, if not by naturally occurring caves or cenotes, and there are virtually no rivers.
It was in these cenotes that geologists of the University of Florida collected sediment cores and discovered in the isotope variations of shells a pronounced drought period between 800 and 1000 A.D., coincident with the collapse of Classic Maya civilization. A even more detailed reconstruction of the climate of the region was possibly by the research done on sediments from the Cariaco Basin, a basin with limited deep water mixing and anoxic conditions on the ground (and therefore perfect sedimentation conditions) offshore Venezuela. Depending from the position of the ITCZ fossil-rich or clastic-rich layers are deposited, so by studying and counting these layers the former variation of the ITCZ and the amount of precipitation can be estimated.
Also this record shows a climate shift and cyclic multi-year droughts from 910 to 760 A.D.

According to the proposed scenario a population at the margin of environmental sustainability experienced repeated droughts and a demise of agricultural production. The various city-states, chronically involved in wars for power and sacrifice victims, consumed the last reserves in a desperate struggle for survive.

However like in the case of Easter Island considering both evidence from natural sciences and historical and cultural circumstances the scenario could become more complicated. The Mayan Civilization was characterized by religious violence and war was less aimed to destroy the enemy than to catch (and sacrifice) the political elite. This society had also survived previous droughts or phases of increased soil erosion, when in A.D. 550-830 the population reached high densities. The power became concentrated in few city-states, which struggled for power and replaced small military expeditions with great wars. The crumbling central government could no longer guarantee the safety of peasants, when the society was further weakened by climate changes.
In the end the city-states were replaced by a most decentralized kind of society, whit the descendants still living today.

Bibliography:

ANSELMETTI, F.S.; HODELL, D.A.; ARIZTEGUI, D.; BRENNER, M. & ROSENMEIER, M.F. (2007): Quantification of soil erosion rates related to ancient Maya deforestation. Geology Vol. 35(10): 915-918
GILL, R.B. (2000): The Great Maya Droughts - Water, Life, and Death. Univ. New Mexico Press: 464
PETERON, L.C. & HAUG, G.H. (2005): Climate and the Collapse of Maya Civilization. American Scientist, Vol. 93: 322-329